
www.manaraa.com

World Wide Web (2012) 15:409–428
DOI 10.1007/s11280-011-0138-0

Data storage auditing service in cloud computing:
challenges, methods and opportunities

Kan Yang · Xiaohua Jia

Received: 9 March 2011 / Revised: 16 June 2011 /
Accepted: 28 June 2011 / Published online: 16 July 2011
© Springer Science+Business Media, LLC 2011

Abstract Cloud computing is a promising computing model that enables conve-
nient and on-demand network access to a shared pool of configurable computing
resources. The first offered cloud service is moving data into the cloud: data owners
let cloud service providers host their data on cloud servers and data consumers
can access the data from the cloud servers. This new paradigm of data storage
service also introduces new security challenges, because data owners and data servers
have different identities and different business interests. Therefore, an independent
auditing service is required to make sure that the data is correctly hosted in the
Cloud. In this paper, we investigate this kind of problem and give an extensive survey
of storage auditing methods in the literature. First, we give a set of requirements of
the auditing protocol for data storage in cloud computing. Then, we introduce some
existing auditing schemes and analyze them in terms of security and performance.
Finally, some challenging issues are introduced in the design of efficient auditing
protocol for data storage in cloud computing.

Keywords data storage auditing · data owner auditing · third party auditing ·
cloud computing

1 Introduction

Cloud computing is a promising computing model that enables convenient and
on-demand network access to a shared pool of computing resources [32]. Cloud

K. Yang (B) · X. Jia
Department of Computer Science,
City University of Hong Kong, Kowloon, Hong Kong
e-mail: lvkiky@gmail.com

X. Jia
e-mail: csjia@cityu.edu.hk

www.manaraa.com

410 World Wide Web (2012) 15:409–428

computing offers a group of services, including Software as a Service (SAAS),
Platform as a Service (PAAS) and Infrastructure as a Service (IAAS) [1]. Cloud
storage is an important service of cloud computing, which allows data owners to
move data from their local computing systems to the Cloud. More and more data
owners start choosing to host their data in the Cloud. The main reason is because of
cost effectiveness, which is particularly true for small and medium-sized businesses.
By hosting their data in the Cloud, data owners can avoid the initial investment of
expensive infrastructure setup, large equipments, and daily maintenance cost. The
data owners only need to pay the space they actually use, e.g., cost-per-gigabyte-
stored model [48]. Another reason is that data owners can rely on the Cloud to
provide more reliable services, so that they can access data from anywhere and at
any time. Individuals or small-sized companies usually do not have the resource to
keep their servers as reliable as the Cloud does.

By hosting data in the Cloud, it introduces new security challenges. Firstly, data
owners would worry their data could be mis-used or accessed by unauthorized users.
Extensive researches have been done on this security issue of data hosting [6, 11–
13, 16, 19, 20, 24, 27, 41, 53]. Secondly, the data owners would worry their data could
be lost in the Cloud. This is because data loss could happen in any infrastructure,
no matter what high degree of reliable measures the cloud service providers would
take [5, 40]. Some recent data loss incidents are the Sidekick Cloud Disaster in 2009
[9] and the breakdown of Amazon’s Elastic Compute Cloud (EC2) in 2010 [34].
Sometimes, the cloud service providers may be dishonest and they may discard the
data which has not been accessed or rarely accessed to save the storage space or keep
fewer replicas than promised. Moreover, the cloud service providers may choose to
hide data loss and claim that the data are still correctly stored in the Cloud. As a
result, data owners need to be convinced that their data are correctly stored in the
Cloud.

Checking on retrieval is a common method for checking the data integrity, which
means data owners check the data integrity when accessing their data. This method
has been used in peer-to-peer storage systems [25, 35], network file systems [22, 26],
long-term archives [31], web-service object stores [54] and database systems [30].
However, checking on retrieval is not sufficient to check the integrity for all the data
stored in the Cloud. There is usually a large amount of data stored in the Cloud, but
only a small percentage is frequently accessed. There is no guarantee for the data that
are rarely accessed. An improved method was proposed by generating some virtual
retrievals to check the integrity of rarely accessed data. But this causes heavy I/O
overhead on the cloud servers and high communication cost due to the data retrieval
operations.

Therefore, it is desirable to have storage auditing service to assure data owners
that their data are correctly stored in the Cloud. But data owners are not willing
to perform such auditing service due to the heavy overhead and cost. In fact, it is
not fair to let any side of the cloud service providers or the data owners conduct
the auditing, because neither of them could be guaranteed to provide unbiased and
honest auditing result [49]. Third party auditing is a natural choice for the storage
auditing. A third party auditor who has expertise and capabilities can do a more
efficient work and convince both the cloud service provider and the data owner. Data
storage auditing is a very resource demanding operation in terms of computational

www.manaraa.com

World Wide Web (2012) 15:409–428 411

resource, memory space, and communication cost. There are three performance
criteria in the design of storage auditing protocols:

– Low storage overhead. The additional storage used for auditing should be as
small as possible on both the Auditor and the cloud server.

– Low communication cost. The communication cost required by the auditing
protocol should be as low as possible.

– Low computational complexity. The computational complexity for storage audit-
ing should be low, especially on the Auditor.

In this paper, we give an extensive survey of storage auditing methods and
evaluate these methods against the above performance criteria. The remaining of
this paper is organized as follows: In Section 2, we discuss the system model for data
storage auditing in cloud computing. Section 3 presents some literature methods for
data storage auditing, followed by the security and performance analysis in Section
4. In Section 5, we propose some challenging issues in data storage auditing. Then,
the conclusion is given in Section 6.

2 Data storage auditing model

In this section, we describe the system model and threat model of data storage
auditing protocol in cloud computing.

2.1 System model

In 1991, Blum et al. [6] first described the auditing problem that enables data
owners to check the integrity of remote data without explicit knowledge of the
entire data. In recent years, with the development of distributed storage systems and
online storage systems [23], the data storage auditing problem becomes even more
significant and many protocols have been proposed: e.g., Remote Integrity Checking
(RIC) protocols [14, 28], Proof of Retrievability (POR) protocols [21] and Provable
Data Possession (PDP) protocols [18]. However, most of the existing protocols only
allowed data owners to check the integrity of their remote stored data. We denote
this type of auditing protocols as the Data Owner Auditing. The system model of
the Data Owner Auditing only contains the remote cloud server and data owners as
shown in Figure 1.

However, in cloud computing, the data storage auditing service is preferred to be
provided by a third party auditor, denoted as the Third Party Auditing, rather than

Figure 1 System model of the
data owner auditing.

Data Owners

Cloud Server
Challenge-response Protocol

www.manaraa.com

412 World Wide Web (2012) 15:409–428

by data owners. For the Third Party Auditing, the system model contains three types
of entities: data owners, the cloud server and the third party auditor, as shown in
Figure 2. During the system initialization, as demonstrated in Figure 2a, data owners
compute the metadata of their data and negotiate the cryptographic keys with the
third party auditor and the cloud server. After that, data owners can choose to be
off-line and do not require to engage any auditing query. Figure 2b shows the system
model for each auditing query which only involves the third party auditor and the
cloud server. Each auditing query is conducted via a challenge-response auditing
protocol, which contains three phases: Challenge, Proof and Verif ication. When the
third party auditor wants to check the correctness of data owners’ data stored on the
cloud server, it generates and sends a challenge to the cloud server. On receiving the
challenge from the third party auditor, the cloud server generates a proof of data
storage and sends it back to the third party auditor. Then, the third party auditor
runs the verif ication to check the correctness of the proof from the cloud server and
extracts the result on this audit query.

As we can see in Figure 2b, the system model of each auditing query in the
Third Party Auditing is quite similar to the one of the Data Owner Auditing. But
the methods for the Data Owner Auditing may not be directly used in the Third
Party Auditing due to the following two reasons: (1) Sending data to the third party
auditor can leak out the data owners’ data, and (2) The third party auditor has
no responsibility to store all the metadata. Thus, both the Data Owner Auditing
protocols and the Third Party Auditing protocols will be introduced and discussed
in the next section.

Figure 2 System model of the
third party auditing.

Data Owners

Cloud Server

Third Party
Auditor

In
iti

ali
za

tio
nInitialization

(a) System Initialization

Cloud Server

Third Party
Auditor

Challenge

Proof

(b) Auditing Query via the Challenge-response Protocol

www.manaraa.com

World Wide Web (2012) 15:409–428 413

2.2 Threat model

We consider the third party auditor is honest-but-curious. It performs honestly
during the whole auditing procedure but it is curious about the received data. Thus,
for the storage of secured data, there is also a privacy requirement for the third party
auditing protocol. That is, no data will be leaked out to the third party auditor during
the auditing procedure.

But the Sever is dishonest and may conduct the following attacks:

Replace Attack Suppose the Server discarded a challenged data block mi or its
metadata ti, in order to pass the auditing, it may choose another
valid and uncorrupted pair of data block and metadata (mk, tk) to
replace the original challenged pair of data block and metadata
(mi, ti).

Replay Attack The Server generates the proof from the previous proof or other
information, without querying the actual Owner’s data.

Forge Attack The Server may forge the metadata of data block and deceive the
Auditor.

3 Methods of data storage auditing

The existing data storage auditing methods can be classified into three categories:
Message Authentication Code (MAC)-based methods, RSA-based Homomor-
phic methods and Boneh–Lynn–Shacham signature [7] (BLS)-based Homomorphic
methods. For simplification, we use the Owner, the Server and the Auditor to denote
the data owner, the cloud service provider (or cloud server) and the third party
auditor respectively.

3.1 MAC-based methods

The message authentication code (MAC) is a kind of hash function which has been
used for checking the data integrity for a long time. In the cooperative Internet
backup scheme proposed by Lillibridge et al. [28], the Reed-Solomon erasure-
correcting codes [39] are applied to generate redundancy blocks. After that, the
MAC is calculated for each encrypted data block. Then, the system peers perform
spot-checks of data blocks using MACs.

Naor and Rothblum [36] extended the memory checking schemes of Blum et al.
[6] and proposed a protocol in which an error-correcting code is applied to a file
and blocks are then MACed. Whenever a verifier (the Owner or the Auditor) needs
to check data integrity, he retrieves a random set of blocks from the Server and re-
computes the MAC of each block for comparison.

Based on the precomputed MACs stored on the verifier, the protocols proposed
by Lillibridge et al. and Naor et al. can detect any data loss or corruption with high
probability. However, in these two protocols, the Server was required to send the
original data to the Auditor, which would leak data to the Auditor. Furthermore,

www.manaraa.com

414 World Wide Web (2012) 15:409–428

they also required the Auditor to store all the MACs. Therefore, both Lillibridge’s
and Naor’s protocols are not suitable for the Third Party Auditing.

Juels and Kaliski [21] gave a formal definition of Proof of Retrievability (POR) and
proposed a POR scheme in which the file F is divided into blocks and each block is
encoded by using an error-correcting code. After encrypting the encoded file, a set
of randomly-valued check blocks called sentinels are embedded into the encrypted
file. For auditing the data storage, the verifier (the Owner or the Auditor) challenges
the Server by specifying the positions of a subset of sentinels and asking the Server
to return the associated sentinels values. The security of this protocol is proved by
Dodis et al. in [15] without making any simplifying assumptions on the behavior of
the adversary. However, this POR protocol is still not suitable for the Third Party
Auditing because it only allows a limited number of auditing times which is related
to the number of sentinels.

In Shah’s auditing protocols [44, 45], the Owner pre-computes some MACs of
the data with different secret keys and sends all the MACs and keys to the Auditor.
When verifying data integrity, the Auditor selects and sends a key k to the Server.
Then, the Server computes the MAC with k and returns it to the Auditor for
comparison with the one stored on the Auditor. However, the number of times a
particular data item can be verified is limited by the number of secret keys that fixed
beforehand. Also, the Auditor needs to store several MACs for each file. Therefore,
Shah’s auditing protocols still cannot be applied for the Third Party Auditing.

Shacham et al. [43] proposed an MAC-based batch verification for multiple data
blocks, which was also proposed in [10]. During the system initialization of this
protocol, the Owner divides the erasure encoded data into n blocks m1, · · · , mn ∈ Zp

for some large prime p. Then, the Owner randomly chooses two numbers α and s
from Z∗

p, which are kept as secrets. Let si = G(s, i)(i = 1, 2, · · · , m), where G is a
secure pseudo random number generator. The Owner calculates an MAC for each
data block i as σi = αmi + si mod p and sends both the data blocks {mi} and their
corresponding MACs {σi} to the Server. Their proof of retrievability protocol can be
described as follows. The Auditor chooses a random challenge set Q and generates
some random coefficients vi(i ∈ Q) in Zp and sends the challenge {(i, vi)}i∈Q to
the Server. The Server then calculates and sends the proof (σ, μ) back to the
Auditor, where σ = ∑

i∈Q viσi and μ = ∑
i∈Q vimi. The Auditor accepts the proof if

σ = αμ + ∑
i∈Q visi. In this method, the Server needs to send the linear combination

of all the challenged data blocks μ = ∑
i∈Q vimi to the Auditor, which may also

leak the data to the Auditor. Since the Auditor has the full knowledge of all the
coefficients {(i, vi)}, it is possible for the Auditor to recover the data blocks when
received enough linear combinations of data blocks.

3.2 RSA-based homomorphic methods

A homomorphism is a mapping f : P → Q between two groups, which has the
property of f (g1 ⊕ g2) = f (g1) ⊗ f (g2) for all g1, g2 ∈ P, where ⊕ and ⊗ denote the
operations in P and Q respectively. The homomorphism has been used to define the
homomorphic hash value or homomorphic tag which have two main types: One is
based on RSA, such as the homomorphic hash value in [14, 18] and homomorphic
tag in [2, 10, 52]. The other type is based on BLS, such as the homomorphic tags used
in [43] and [55].

www.manaraa.com

World Wide Web (2012) 15:409–428 415

We first introduce the RSA-based homomorphic methods. Let N = pq be a RSA
modulus, where p and q are prime numbers, such that p′ = (p − 1)/2 and q′ = (q −
1)/2 are also prime numbers.

3.2.1 RSA-based homomorphic hash value

Filho et al. [18] proposed a cryptographic protocol via an RSA-based homomorphic
hash function, through which the Server can demonstrate possession of a set of data
to the Owner. In this protocol, during the system initialization, the Owner calculates a
hash value h(m) = m mod φ(N) (where φ(N) = (p − 1)(q − 1) is an Euler Function
of N) and sends the data m to the Server. Then, the Owner may delete the data
m on his own system and only keeps the hash value h(m). For the data storage
auditing, the Owner randomly chooses an integer b(1 < b < N − 1) and sends it to
the Server. The Server computes Mp = b m mod N and sends it back the Owner.
Then, the Owner computes M′

p = b h(m) mod N and checks whether Mp = M′
p. If

true, the Owner is convinced that the Server stores the data m correctly.
Sebe et al. [42] improved Filho’s protocol by first dividing data into blocks and

generating an RSA-based homomorphic hash function on each data block. Their
data possession checking protocol is based on the Diffie–Hellman key exchange
method which can be described as follows:

(a) System initialization: the owner divides the data m into l-bit blocks m1, · · · , mn

(n = �|m|/ l) (the last block is padded with 0s in the most significant bit
positions if its length is less than l) and stores a homomorphic hash value
Mi = mi mod φ(N) for each data block mi.

(b) Challenge-response protocol: the owner generates a random seed S and a
random element a ∈ ZN , then sends the challenge (a, S) to the Server. Upon
receiving the challenge, the Server generates n pesudorandom values vi ∈ [1, 2t]
(i = 1, · · · , n) using PRNG seeded by S, where t is the security parameter and
PRNG is a pseudorandom number generator which can generate t-bit integer
values. Then the Server sends a proof R = ar mod N to the Owner, where
r = ∑n

i=1 vimi. The Owner also generates n pesudorandom values vi ∈ [1, 2t]
(i = 1, · · · , n) using PRNG seeded by S and computes R′ = ar′

mod N, where
r′ = ∑n

i=1 viTi mod φ(N). The proof of the Server is correct if R = R′.

Both Filho’s protocol and Sebe’s protocol are designed for the Data Owner
Auditing and require the Owner to store the homomorphic hash value. Thus, these
two protocols cannot be applied for the Third Party Auditing.

3.2.2 RSA-based homomorphic tag

Deswarte et al. [14] defined a homomorphic tag for a file m, which can help the
Owner check the data integrity based on the Diffie–Hellman key exchange method.
In this protocol, during the system initialization, the Owner randomly chooses
an element a(1 < a < N − 1), and computes the homomorphic tag of the file m:
t = am mod N. Then, the Owner sends the file m to the Server and stores the
homomorphic tag t. When checking the integrity of m, the Owner chooses a random
value r(1 < r < N − 1) and sends the challenge R = ar mod N to the Server. Upon

www.manaraa.com

416 World Wide Web (2012) 15:409–428

receiving the challenge, the Server calculates and responses a proof P = Rm mod N
to the Owner. If tr mod N = P, the Owner considers that m is correctly stored on the
Server.

Similarly, Yamamoto et al. [52] presented a fast integrity checking scheme for
verifying the integrity of message. Their idea is to use homomorphic tags for all
message blocks and make batch verification based on the homomorphism of the
tags. Suppose there are n message blocks (m1, m2, · · · , mn). The sender generates
the tags (t1, t2, · · · , tn) for all blocks as ti = gmi mod N, where g is a generator of ZN .
The receiver checks the data integrity by randomly choosing v ∈ [0, s − 1] and com-
putes the verification vector v = (v1, v2, · · · , vn) where vi = vi−1 mod s(i = 1, · · · , n)

and s is the system parameter. Then, the receiver computes Mp = ∑n
i=1 vimi in Z

and Tp = ∏n
i=1 tvi

i in ZN . If Mp = Tp mod N, all the received message blocks are
correct.

Although the batch verification based on the homomorphic tags can improve
the efficiency of auditing, both Deswarte’s protocol and Yamamoto’s protocol are
still not suitable for the Third Party Auditing due to the storage of tags on the
Owner. For the Third Party Auditing, Ateniese et al. [2] proposed a Sampling
Provable Data Possession (S-PDP) scheme which combines the RSA cryptography
with homomorphic tags. In this scheme, the Auditor does not need to keep the
homomorphic tags and the sampling mechanism greatly reduces the workload of the
Server. The S-PDP scheme can be described as follows.

Let f be a pseudorandom function, let π be a pseudorandom permutation and let
H be a cryptographic hash function. Let h : {0, 1}∗ → QRN be a secure deterministic
hash value and encode function that maps strings uniformly to QRN , where QRN is
a unique cyclic subgroup of Z∗

N .

(a) System initialization: suppose the data M is encrypted and divided into n data
blocks (m1, m2, · · · , mn). The Owner generates the security keys pk = (N, g)

and sk = (e, d, v), such that ed = 1 mod p′q′. e is a large secret prime such
that e > λ and d > λ, where λ is a system parameter. g is a generator of QRN

and v
R← {0, 1}κ . Then, the Owner computes the data tag for all data blocks

mi: Ti = (h(Wi) · gm)d mod N, where Wi = v||i (|| denotes the combination
operation) and sends pk, M = (m1, m2, · · · , mn) and T = (T1, T2, · · · , Tn) to
the Server for storage. Then, the Owner sends pk, e and the data information
(e.g., the data name and the number of blocks n etc.) to the Auditor. After
that, the Owner may delete the data M and its data tag T from its local storage
system.

(b) Challenge-response protocol:

(1) Challenge The Auditor generates a challenge (c, k1, k2, gs), where k1
R←

{0, 1}κ , k2
R← {0, 1}κ , gs = gs mod N and s

R← Z∗
N and sends the challenge

to the Server.

(2) Proof Upon reception, the Server computes the indices of the blocks
i j = πk1(j) and the coefficients a j = fk2(j) for each j(1 ≤ j ≤ c); Then
computes and sends both the tag proof T = ∏c

j=1 T
a j

i j
and the data proof

ρ = H(g
∑c

j=1 a jm j
s) mod N to the Auditor. �

www.manaraa.com

World Wide Web (2012) 15:409–428 417

(3) Verif ication The Auditor computes i j = πk1(j), a j = fk2(j), Wi j = v||i j for
1 ≤ j ≤ c and compute

τ = Te

∏c
j=1 h(W

a j

i j
)

mod N.

If H(τ s mod N) = ρ, the Auditor considers that all the challenged data blocks are
correctly stored on the Server.

In Ateniese’s protocol, the homomorphic tag is encrypted by a private key d, so
that it allows the public verification with the public key e. This protocol also does
not require the Auditor to store the data tags, so that it can be applied to the Third
Party Auditing. Further to this protocol, Ateniese et al. [4] also provided a framework
for building public-key homomorphic tags from any identification protocol satisfying
certain homomorphic properties. They also illustrated the transformations by apply-
ing them to an identification protocol by Shoup [46] and thus obtained a proof of
storage protocol based on the hardness of factoring.

As we can see, in the protocols using the RSA-based homomorphic tag, the
Server is always required to exponentiate the entire data [14] or data blocks [2, 52].
That is because the Server has no knowledge about the factorization of the RSA
modulus N, so that it cannot use the Theorem of Euler or the Chinese Remainder
Theorem to simplify the computation complexity. In order to reduce the computation
complexity of the exponentiation on the Server, Shacham et al. [43] proposed a
method which also appeared in other protocols using the BLS-based homomorphic
tags [55]. Similar to the methods used in Sebe’s protocol [42] by splitting the data
into data blocks, their method is to further divide the data blocks to several sectors,
so that it can reduce the computation complexity by just exponentiating the linear
combination of sectors.

In Shacham’s protocol [43], given the data M, the Owner first applies the erasure
code to obtain M′, then splits M′ into n blocks and s sectors {mij} (1 ≤ i ≤ n, 1 ≤
j ≤ s) for each block. Let H : {0, 1}∗ → Z∗

N be a full-domain hash function. Let
e and d be the public key and the private key respectively. For each block mi,
the Owner computes the tag σi = (H(name||i) · ∏s

j=1 u
mij

j)d mod N, where u j are
randomly selected elements in Z∗

N . The data {mij} are sent to the Server together
with the tags {σi}. The Owner sends the public key e and the data information to the
Auditor. For data storage auditing, the Auditor randomly chooses a subset of data
blocks Q and generates the coefficients vi for each selected data block mi. Then, it
sends a challenge {(i, vi)}i∈Q to the Server. When received the challenge, the Server
computes and sends back both the tag proof σ = ∏

i∈Q σ
vi
i mod N and the data proof

μ j = ∑
i∈Q vi · mij, where the sum is computed in Z without the modular reduction.

The verification equation is

σ e ?=
∏

i∈Q

H(name||i)vi ·
s∏

j=1

u
μ j

j mod N.

Although the computation complexity can be reduced by further splitting the data
blocks into several sectors, the exponentiation computation on the linear combina-
tion of sectors is still costly. This problem can be solved by using the homomorphic
tags based on the BLS signatures [7].

www.manaraa.com

418 World Wide Web (2012) 15:409–428

3.3 BLS-based homomorphic methods

Let G1, G2 and GT be three multiplicative groups with the same prime order p. A
bilinear mapping is a mapping e : G1 × G2 → GT with the following properties:

– Bilinearity: e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2 and a, b ∈ Zp.
– Non-degeneracy: There exist u ∈ G1, v ∈ G2 such that e(u, v) �= I, where I is the

identity element of GT .
– Computability: e can be efficiently computed.

Such a bilinear mapping is called a bilinear pairing. Especially, if g1 and g2 are the
generators of G1 and G2 respectively, e(g1, g2) is the generator of GT . The BLS-based
homomorphic tag is generated in the scenario of bilinear pairing.

Shacham and Waters [43] proposed a proofs of retrievability scheme by using the
homomorphic tags based on BLS signatures. Suppose the data is divided into n blocks
m = {m1, · · · , mn}. Let G and GT be the multiplicative groups with the same prime
order p and e : G × G → GT be a computable bilinear map. Let x ∈ Zp and v = gx ∈
G be the private key and public key of the Owner. The homomorphic tag on block mi

is σi = (H(i)umi)x, where u is another generator of G. Then, the Owner sends the data
{mi} and the tags {σi} to the Server. For auditing query, the Auditor chooses a random
subset of data blocks Q and generates the coefficients vi for each chosen data block
mi and sends a challenge {(i, vi)} to the Server. The Server computes and sends back
σ = ∏

i∈Q σ
vi
i and μ = ∑

i∈Q vi · mi. The proof is correct if the verification equation
e(σ, g) = e(

∏
i∈Q H(i)vi · uμ, v) is true. This scheme supports the public verification:

the private key x is used for generating the homomorphic tags {σi} and the public key
v is sufficient for the verifier to do auditing.

Shacham and Waters also proposed an extension of this protocol by further
splitting the data blocks into several sectors, similar to the protocol proposed
independently by Zeng in [55]. However, in Shacham’s protocols, the Server needs
to send the linear combinations of data blocks back to the Auditor. As we ana-
lyzed, it will leak the data to the Auditor. To enhance Shacham’s protocols, Wang
et al. proposed a privacy-preserving public auditing protocol with a random mask
technique [50]. In their protocol, the Server does not directly send back the linear
combination of data blocks to the Auditor. Instead, the Server will choose a random
number and combine this random number with these chosen data blocks. Then the
Server encrypts this random number and sends it back to the Auditor together with
the linear combination of both data blocks and the random number. Similar mask
techniques were also applied in other protocols to protect the data privacy of Owners,
such as the IPDP protocol proposed in [56].

Zhu et al. [56] proposed an IPDP scheme to check the data integrity and ensure
the confidentiality of secret data in private Cloud. In IPDP scheme, let e : G × G →
GT be a computable bilinear map with randomly selected generators g, h ∈RG,
where G and GT are two multiplicative groups with the same prime order p. Let
Hk() be a keyed hash function and sk = (α, β) be the secret key, where α and β are
randomly chosen in Zp. Let pk = (g, h, h1, h2) be the public key, where h1 = hα and
h2 = hβ .

The file F is divided into n blocks and s sectors per block F = {mij}(1 ≤ i ≤ n, 1 ≤
j ≤ s). The Owner chooses s random numbers k1, k2, · · · , ks ∈ Zp as the secret of
this file and computes ui = gki ∈ G and H1 = Hk(Fn), where k = ∑s

i=1 ki for all

www.manaraa.com

World Wide Web (2012) 15:409–428 419

ki(i = 1, · · · , n) and Fn is the file name. For each data block, the Owner builds an
index χi = (Bi = i, Vi = 1, Ri ∈R{0, 1}∗) and calculates a tag ti = (H2)

αg
∑s

j=1 k jmijβ ∈
G, where H2 = HH1(χi) 1 ≤ i ≤ n. Then, the Owner sends (K, U, χ) to the Auditor,
where K = {k1, · · · , ks}, U = {u1, · · · , us} and χ = {χ1, · · · , χn} and sends (F, T) to
the Server, where F = {mij} and T = {ti}(1 ≤ i ≤ n, 1 ≤ j ≤ s).

The IPDP protocol between the Server and the Auditor can be shown as follows:

(1) Commitment The Server chooses a random number r ∈ Zp, and sends its
commitment C = (hr

1) to the Auditor.
(2) Challenge The Auditor chooses a random subset of data blocks Q and

generates a random coefficient vi for each chosen data block.
Then, it sends the challenge {(i, vi)}i∈Q to the Server.

(3) Proof The Server choose s integers λ j (1 ≤ j ≤ s) at random and cal-
culates the data proof M = {Mj} where Mj = λ j + r · ∑

i∈Q vimij

and the tag proof Tp = ∏
i∈Q trvi

i . Then it sends the proof

(M, Tp, π) to the Auditor, where π ={π j} and π j =u
λ j

j (1≤ j≤s).
(4) Verification The Auditor verifies the proof by checking the following

equation

e(Tp, h)
?= e

⎛

⎝
∏

i∈Q

Hvi
2 , hr

1

⎞

⎠ · e

⎛

⎝
s∏

j=1

u
Mj

j

π j
, h2

⎞

⎠ .

If the above equation is true, the Auditor believes that the challenged data and
their tags are correctly stored on the Server. Moreover, Zhu et al. also proposed
a cooperative PDP protocol for hybrid Cloud with an organizer. �

4 Analysis of auditing methods

In this section, we first analyze the security of auditing methods we introduced and
then give the performance of them in terms of storage overhead, communication cost
and computation complexity.

4.1 Security analysis

During the description of the existing auditing protocols, we find that different
protocols may have different security levels. For example, some protocols can only
allow the data owner to conduct the auditing and some protocols may be provably
secure in random oracle model or standard model.

We summarize the security analysis in Table 1. From the table, it is not difficult to
find that most of the MAC-based methods are semantically secure since they do not
rely on public keys. Some RSA-based protocols are provably secure in the standard
model, while others which rely on homomorphic tags are provably secure only in the
random oracle model.

We also analyze and compare the privacy-preservation of those protocols. As we
described in the threat model in Section 2.2, it is significant to guarantee the data
privacy during the procedure of Third Party Auditing. Hence, those schemes which
are not privacy-preserving cannot be applied in the Third Party Auditing.

www.manaraa.com

420 World Wide Web (2012) 15:409–428

Table 1 Security analysis.

Protocol Security Assumption Privacy-Preserving

Lillibridge’s [28] SS N/A No
Naor’s [36] SS N/A No
Juels’s [21] SS N/A Yes
Shah’s [45] PS/RO DL Yes
Shacham’s (MAC) [43] SS N/A No
Filho’s [18] PS/ST IF Yes
Sebe’s [42] PS/ST IF, DH Yes
Deswarte’s [14] PS/ST DH Yes
Yamamoto’s [52] PS/ST DH No
Ateniese’s [2] PS/RO IF, DH Yes
Shacham’s (RSA) [43] PS/RO IF, DH No
Shacham’s (BLS) [43] PS/RO CDH No
Wang’s [50] PS/RO CDH Yes
Zhu’s [56] PS/RO CDH Yes

SS: Semantically Secure, PS: Provably Secure, ST: Standard Model, RO: Random Oracle Model,
DL: Discrete Logarithm, IF: Integer Factorization, DH: Diffie–Hellman, CDH: Computational DH

4.2 Storage overhead

As we can see in the existing data storage auditing protocols, the metadata (e.g.,
MAC, signature and tag etc.) plays an important part during the auditing procedure,
while it also contributes the major part of the storage overhead. For example, in [28]
and [36], the verifier (the Owner) has to store the MACs of the data or data blocks.
In homomorphic methods [42, 52], the verifier (the Owner or the Auditor) needs to
store the homomorphic hash value or homomorphic tag.

But in some MAC-based methods [10, 43], the metadata is as long as each data
blocks and the storage overhead of metadata is 100% of the data. Also, in RSA-based
homomorphic methods, the size of metadata is equal to the size of RSA modulus. For
example, in the SPDP scheme [3], given a 2048-bit RSA modulus, if the RSA public
key e is chosen to be a 6168 bits prime, the SPDP scheme requires that each block
should be less than e/2, otherwise the SPDP scheme is not provable secure. In this
case, a 64-MB data would be divided into at least 87, 056 blocks, each of which has a
2048-bit long metadata. Thus, the total size of all the metadata is about 21.2MB [55].

In order to reduce the storage overhead caused by metadata, short metadata
are preferred in data storage auditing protocol. For example, in some BLS-based
homomorphic auditing protocols [43, 55, 56], the homomorphic tags based on BLS
signatures are much shorter than the RSA-based homomorphic tags. Besides, some
other methods are proposed to reduce the storage overhead in previous works. For
instance, Oprea et al. [37] proposed a space-efficient block storage integrity checking
scheme which exhibits a tradeoff between the level of security and the additional
client’s storage overhead. And Bowers et al. [8] also improved the protocols of Juels
[21] to achieve lower storage overhead.

However, in the Third Party Auditing, there is no need for the Auditor to store the
metadata for all Owners. First, the Auditor is a third party organizer who provides
the data storage auditing service for both Servers and Owners. Another reason is
that the storage ability of the Auditor is limited and not as powerful as the Server.
Although the metadata may be very small compared to the data, the total storage of

www.manaraa.com

World Wide Web (2012) 15:409–428 421

Table 2 Storage overhead analysis.

Protocol Storage overhead

On the auditor On the server

Lillibridge’s [28] |h(m)| N/A
Naor’s [36] n · |h(mi)| N/A
Juels’s [21] k · |sentineli|a k · |sentineli|a
Shah’s [45] O(l · λ) + l · |h(ki, m)|b N/A
Shacham’s (MAC) [43] N/A n · |p|
Filho’s [18] |φ(N)| N/A
Sebe’s [42] n · |φ(N)| N/A
Deswarte’s [14] |N| N/A
Yamamoto’s [52] n · |N| N/A
Ateniese’s [2] O(λ) n · |N|
Shacham’s (RSA) [43] O(λ) n · |N|
Shacham’s (BLS) [43] O(λ) n · |p|
Wang’s [50] O(λ) n · |p|
Zhu’s [56] O(λ) n · |p|
ak denotes the total number of sentinels in the file.
bl denotes the total number of precomputed keys.

metadata will still require a large space. That is because: (1) The number of Owners
is very large and still is increasing; (2) For each Owner, the number of data is also
an increasing large number. Thus, the Auditor is not able to serve the storage of the
metadata whose size is linear with the data stored in Servers.

In this situation, an obvious method is storing the metadata on the Server instead
of storing on the Auditor, which has already been used in some protocols [2, 43, 55].
During the system initialization, after computing the metadata, the Owner stores the
metadata together with the data on the Server. For each auditing query, the Server
will generate and send back both the data proof and the tag proof to the Auditor
instead of only the data proof. In fact, the less storage on the Auditor the more
communication cost will be. There is a trade-off between the storage overhead on
the Auditor and the communication cost between the Servers and the Auditor during
the auditing procedure.

Table 2 shows the storage overhead comparison of some protocols we introduced.
In Table 2, the data m is divided into n blocks m = {m1, · · · , mn} and each data block
mi(i = 1, · · · , n) is divided into s sectors mi = {mi1, · · · , mis}. Let λ be the security
parameter which is usually the size of key. Let |x| be the length of x and h() be the
hash function. Let p denote the order of the groups and φ(N) denotes the Euler
Function on the RSA modulus N.

4.3 Communication cost

Since Owners are not involved in each auditing query in the Third Party Auditing
protocols, the main communication cost we concerned is the communication cost
between the Server and the Auditor during each challenge-response auditing query.
Suppose Q is the random selected challenge query set with c items, we compare the
communication cost of some protocols as shown in Table 3. It is easy to find that
the communication cost can be reduced by using short homomorphic tags, such as

www.manaraa.com

422 World Wide Web (2012) 15:409–428

Table 3 Communication cost for each challenge-response auditing query.

Protocol Communication cost

Challenge Proof

Lillibridge’s [28] N/A |m|
Naor’s [36] N/A c · |mi|
Juels’s [21] N/A

∑
i∈Q |sentineli|a

Shah’s [45] k |h(ki, m)|
Shacham’s (MAC) [43] c · |vi| |p| + |mi|
Filho’s [18] N/A |N|
Sebe’s [42] |N| |N|
Deswarte’s [14] |N| |N|
Yamamoto’s [52] c · |vi| |mi|
Ateniese’s [2] |N| |N| + |N|
Shacham’s (RSA) [43] c · |vi| |N| + |mij|
Shacham’s (BLS) [43] c · |vi| |p| + |p|
Wang’s [50] c · |vi| |p| + |p| + |p|
Zhu’s [56] c · |vi| |p| + |p| + s · |p|
aAll the sentinels within the challenged block set Q.

the BLS-based homomorphic tags. To further reduce the communication cost, two
main mechanisms are used in the existing protocols: Sampling and Batch Auditing.

Sampling In the protocol proposed by Lillibridge et al. [28], the Server has to
send the entire data back to the Auditor which will cause heavy communication
cost. Further to [28], Naor and Rothblum [36] proposed a protocol to reduce the
communication cost by dividing the data into several blocks and just returning some
sampled data blocks during each query. This sampling method is also applied in those
homomorphic methods, such as Ateniese’s PDP protocol [2] and Shacham’s compact
POR protocol [43] etc.

Batch auditing The batch processing for multiple message blocks was first applied
in Yamamoto’s protocol [52]. Via a RSA-based homomorphic hash function h, to
check that all of t1 = h(m1), t2 = h(m2), · · · , tn = h(mn) hold, it suffices to check
Tp = h(Mp), where Mp and Tp are linear combinations of mi and ti respectively
with a weight randomly chosen by the verifier. With the batch auditing, the Server
just needs to send the linear combination of all the sampled data blocks whose size is
equal to one data block, so that it can save the communication bandwidth.

In the Third Party Auditing protocols [2, 42, 43, 55], the metadata are stored on
the Server together with the data. As a result, during each auditing query, the Server
needs to send both data proof and tag proof to the Auditor which contributes higher
communication cost than those protocols which require the Auditor to maintain a
copy of metadata. Thus, as we discussed, there is a tradeoff between the storage
overhead on the Auditor and the communication cost between the Auditor and the
Server.

4.4 Computation complexity

Under the Third Party Auditing model, the computation cost of the auditing sys-
tem comes from three parts: the computation cost on Owners during the system

www.manaraa.com

World Wide Web (2012) 15:409–428 423

initialization, the computation cost on both the Server and the Auditor for each
challenge-response auditing query.

Computation cost on owners In the Third Party Auditing model, Owners are only
involved in the system initialization. So the computation cost on Owners comes
from two main parts: error-correcting code computation and metadata computation.
During the system initialization, the Owner first needs to encode the data with an
error-correcting code. In [21], Juels et al. pointed that the error-correcting encoding
on the entire data used in [36] is inefficient, and they suggested to apply the error-
correcting code on each data block to reduce the computation cost of error-correcting
code. For the metadata computation, fortunately, the computation can be conducted
efficiently: With the full knowledge of the factorization of the RSA modulus, Owners
can use the Theorem of Euler to simplify the tag computation by replacing the
exponent m by the short value (m mod φ(N)) of length around 1024 bits or 2048 bits
which is independent of the length of the data blocks and the Chinese Remainder
Theorem can also be applied to reduce the computation cost.

Computation cost on the auditor Since the Auditor is an organization who provides
the auditing service for both Owners and Servers, its computation ability is not as
strong as the Server. In many previous works, the computation cost on the Auditor
during each auditing query can be reduced by shifting the computation load from
the Auditor to the data storage server. However, in some protocols, the computation
cost on the Auditor is still heavy.

Computation cost on the server In RSA-based homomorphic methods, the com-
putation of the exponentiation of the data contributes the main part of all the
computation cost on the Server. As we mentioned, in some protocols [14, 18], the
Server needs to exponentiate the entire data which will cause heavy computation
cost, since the Server has no knowledge about the factorization of the RSA modulus.
To reduce the computation cost of the exponentiation, in [52] and [42], the Owners
first divide the data into several blocks and do the batch processing for some sampled
data blocks, so that the Server only needs to exponentiate the linear combination of
all the sampling data blocks whose size is the same as one data block. To further
reduce the exponentiation computation cost, Shacham et al. [43] and Zeng [55]
divided each data block into several sectors and the Server just needs to exponentiate
the linear combinations of the sampled data sectors whose size is the same to each
data sector. However, in BLS-based homomorphic methods, the computation cost
on the exponentiation of the data can be reduced by the modular reduction in Zp.

5 Challenging issues of data storage auditing

5.1 Dynamic auditing

As we can see, most of the previous auditing protocols (also denoted as Proof
of Retrievability (POR) or Provable Data Possession (PDP)) are designed for the
static archive storage system, e.g., libraries and scientific datasets. However, in cloud
computing, the dynamic scalability is a significant issue for various applications which
means that the data stored on the cloud server can be dynamically updated by data

www.manaraa.com

424 World Wide Web (2012) 15:409–428

owners such as: block modification, deletion and insertion. Therefore, an efficient
dynamic auditing protocol is essential in practical cloud storage systems.

Ateniese et al. developed a dynamic provable data possession protocol [3] based
on cryptographic hash function and symmetric key encryption. Their idea is to
pre-compute a certain number of metadata during the setup period, so that the
number of updates and challenges is limited and fixed beforehand. In their protocol,
each update operation requires recreating all the remaining metadata, which is
problematic for large files. Moreover, their protocol cannot perform block insertions
anywhere (only append-type insertions are allowed).

Erway et al. [17] proposed a definitional framework for dynamic provable data
possession, which extends the PDP model to support probable updates on the
stored data. They also proposed two dynamic provable data possession scheme by
using a new version of authenticated dictionaries based on rank information. They
constructed the rank-based authenticated dictionaries in two ways: one is based on
the Skip List and the other is using the Merkle Hash Tree [33, 38]. As illustrated in
[17], there are some challenging issues for dynamic data storage auditing:

(1) Computation complexity for updates. The data update operations (e.g., data
modification, deletion and insertion) will cause additional computation cost
on both data owners and cloud servers. Thus, low computation complexity is
essential for an efficient dynamic data storage auditing protocol. For example,
in [3], the authors used the symmetric key cryptographic to reduce the compu-
tation cost, while the recreation of all the remaining metadata still cause a large
number of computation cost on the Server.

(2) Communication cost for updates. For data modification and insertion, it is
required to send the new data block and its metadata to the Server. The
communication cost should be as low as possible.

(3) Storage overhead for updates. Dynamic operations can also contribute addi-
tional storage for both the cloud server and the third party auditor, e.g., the
rank-based authenticated dictionary in [17], the Merkle Hash Tree in [51] and
the index table in [56]. Thus, the storage overhead for updates is required to be
as small as possible in the dynamic auditing protocol in cloud computing.

(4) Security requirement for updates. The update operations may introduce addi-
tional threats to the auditing system. For instance, in Ateniese’s protocol [3],
the Server can deceive the verifier by using the previous metadata or responses
due to the lack of the randomness in the challenge. Also, in Wang’s auditing
protocol [51], the data block updating makes the auditing system insecure due
to the replay attack on the same hash values. To avoid the replay attack, Zhu
et al. [56] proposed remote data integrity checking protocols to support the
dynamic change of the data by using an index table.

These challenging issues should be seriously considered when designing an
efficient and secure dynamical auditing protocol for data storage.

5.2 Collaborative auditing

In [29], Lin pointed out that the group collaboration is an important application in
cloud computing. There are some reasons: First, the client-server essence of cloud
computing makes it suitable to support group collaboration. Second, the benefit of

www.manaraa.com

World Wide Web (2012) 15:409–428 425

group collaboration may be the main reason for an organization or a corporation
deciding to subscribe a cloud service. Lin also proposed a data storage auditing
protocol for the scenario of group collaboration based on the protocols proposed
by Smart et al. [47] and Wang et al. [51].

For the group collaboration, Zhu et al. [56] proposed a Cooperative Provable Data
Possession (CPDP) protocol to deal with the PDP problem in a hybrid Cloud which
combines the public Clouds with the private Clouds. In their protocol, the verification
is performed by a 5-way interactive proof among an organizer, an auditor and some
provers. (1) The organizer initiates the protocol and sends the commitment to the
auditor; (2) The auditor returns a challenge set of random index-coefficient pairs Q
to the organizer; (3) The organizer relays them into each prover Pi in the group P

according to the exact position of each data block; (4) Each prover Pi returns its
response of challenge to the organizer; (5) The organizer synthesizes a final response
from these responses and sends it to the auditor. However, Zhu’s protocol [56] may
not be feasible in real cloud computing systems due to the requirement of a honest
organizer.

There are some challenging issues for the collaborative auditing for data storage:

(1) Job assignment As we discussed above, the collaborative auditing protocol are
preferred to involve only the third party auditor and several cloud servers.
Without a honest third party organizer, the job assignment will be a significant
challenging problem for designing the collaborative auditing protocol for data
storage.

(2) Communication cost Since the collaborative auditing is carried on several cloud
servers, the data transfer among these cloud servers will play an important
part in the collaborative auditing. Therefore, the communication cost for
collaborative auditing should be as slow as possible.

(3) Security guarantee The collaborative auditing will involve different cloud ser-
vice providers, which may have different security levels, such as the public
Clouds and the private Clouds. During the collaborative auditing, the cloud
service providers may need to send their auditing data to other intermediate
cloud service providers, which may leak the data out. Therefore, it is necessary
for the collaborative auditing protocol to provide the security guarantee for all
the involved data.

In addition, it is required to consider the Storage Overhead and the Computation
Complexity on both the third party auditor and cloud servers.

5.3 Batch auditing

The idea of batch auditing was first proposed in Yamamoto’s protocol [52]. Via a
RSA-based homomorphic hash function h, to check that all of t1 = h(m1), t2 = h(m2),
· · · , tn = h(mn) hold, it suffices to check Tp = h(Mp), where Mp and Tp are linear
combinations of mi and ti respectively with a weight randomly chosen by the verifier.
Compared with auditing individually, the batch auditing has several advantages: (1)
It can save the communication bandwidth, because the Server just needs to send the
linear combination of all the sampled data blocks whose size is equal to one data
block; (2) It can reduce the computation complexity for auditing on both the third
party auditor and the cloud server.

www.manaraa.com

426 World Wide Web (2012) 15:409–428

The batch auditing for multiple data blocks are applied in many auditing protocols,
such as Ateniese’s PDP protocol [2], Shacham’s POR protocols [43] and Zhu’s
CPDP protocol [56] etc. However, in these protocols, the batch auditing only support
multiple data blocks of the same data owner. Wang et al. proposed a batch auditing
protocol for multiple data blocks from multiple data owners [50]. For example, given
k auditing delegations on k distinct data files from k different data owners, it is more
efficient for the third party auditor to batch these k tasks together and audit it once.

Although the batch auditing can greatly improve the efficiency of auditing, when
designing the batch auditing protocol, it is necessary to consider the Computation
Complexity and Communication Cost for batch operations.

6 Conclusion

In this paper, we investigated the auditing problem for data storage in cloud
computing and proposed a set of requirements of designing the Third Party Auditing
protocols. We also described and analyzed the existing auditing methods in the
literature. Finally, we discussed some challenging issues in the design of efficient
auditing protocols for data storage in cloud computing.

References

1. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53, 50–58 (2010)
2. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.: Provable

data possession at untrusted stores. In: Proceedings of the 14th ACM Conference on Computer
and Communications Security, CCS ’07, pp. 598–609. ACM, New York, NY, USA (2007)

3. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient provable data
possession. In: Proceedings of the 4th International Conference on Security and Privacy in
Communication Networks, SecureComm ’08, pp. 9:1–9:10. ACM, New York, NY, USA (2008)

4. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identification protocols.
In: Proceedings of the 15th International Conference on the Theory and Application of Cryptol-
ogy and Information Security: Advances in Cryptology, ASIACRYPT ’09, pp. 319–333. Springer,
Berlin, Heidelberg (2009)

5. Bairavasundaram, L.N., Goodson, G.R., Pasupathy, S., Schindler, J.: An analysis of latent sector
errors in disk drives. In: Proceedings of the 2007 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS ’07, pp. 289–300. ACM,
New York, NY, USA (2007)

6. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness of memories.
In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, SFCS ’91,
pp. 90–99. IEEE Computer Society, Washington, DC, USA (1991)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryptol. 17, 297–319
(2004)

8. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: theory and implementation. In:
Proceedings of the 2009 ACM Workshop on Cloud Computing Security, CCSW ’09, pp. 43–54.
ACM, New York, NY, USA (2009)

9. Cellan-Jones, R.: The Sidekick Cloud Disaster. BBC News, vol. 1 (2009)
10. Chang, E.C., Xu, J.: Remote integrity check with dishonest storage server. In: Proceedings

of the 13th European Symposium on Research in Computer Security: Computer Security,
ESORICS ’08, pp. 223–237. Springer, Berlin, Heidelberg (2008)

11. Clarke, D., Devadas, S., van Dijk, M., Gassend, B., Suh, G.E.: Incremental multiset hash func-
tions and their application to memory integrity checking. In: Proceedings of the 9th International
Conference on the Theory and Application of Cryptology and Information Security: Advances
in Cryptology, ASIACRYPT’03, pp. 188–207. Springer (2003)

www.manaraa.com

World Wide Web (2012) 15:409–428 427

12. Curtmola, R., Khan, O., Burns, R.: Robust remote data checking. In: Proceedings of the 4th
ACM International Workshop on Storage Security and Survivability, StorageSS ’08, pp. 63–68.
ACM, New York, NY, USA (2008)

13. Curtmola, R., Khan, O., Burns, R., Ateniese, G.: MR-PDP: multiple-replica provable data pos-
session. In: Proceedings of the 2008 the 28th International Conference on Distributed Computing
Systems, ICDCS ’08, pp. 411–420. IEEE Computer Society, Washington, DC, USA (2008)

14. Deswarte, Y., Quisquater, J., Saidane, A.: Remote integrity checking. In: The Sixth Work-
ing Conference on Integrity and Internal Control in Information Systems (IICIS). Springer
Netherlands (2004)

15. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplification. In: Pro-
ceedings of the 6th Theory of Cryptography Conference on Theory of Cryptography, TCC ’09,
pp. 109–127. Springer (2009)

16. Dwork, C., Naor, M., Rothblum, G.N., Vaikuntanathan, V.: How efficient can memory checking
be? In: Proceedings of the 6th Theory of Cryptography Conference on Theory of Cryptography,
TCC ’09, pp. 503–520. Springer (2009)

17. Erway, C., Kupccu, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession. In:
Proceedings of the 16th ACM Conference on Computer and Communications Security, CCS ’09,
pp. 213–222. ACM, New York, NY, USA (2009)

18. Gazzoni Filho, D., Barreto, P.: Demonstrating data possession and uncheatable data transfer.
Tech. Rep., Citeseer (2006)

19. Goodson, G.R., Wylie, J.J., Ganger, G.R., Reiter, M.K.: Efficient byzantine-tolerant erasure-
coded storage. In: Proceedings of the 2004 International Conference on Dependable Systems
and Networks, pp. 135–. IEEE Computer Society, Washington, DC, USA (2004)

20. Hu, L., Ying, S., Jia, X., Zhao, K.: Towards an approach of semantic access control for cloud
computing. In: Cloud Computing, pp. 145–156 (2009)

21. Juels, A., Kaliski, Jr., B.S.: Pors: proofs of retrievability for large files. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security, CCS ’07, pp. 584–597. ACM,
New York, NY, USA (2007)

22. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: scalable secure file sharing
on untrusted storage. In: Proceedings of the 2nd USENIX Conference on File and Storage
Technologies, pp. 29–42. USENIX Association, Berkeley, CA, USA (2003)

23. Kher, V., Kim, Y.: Securing distributed storage: challenges, techniques, and systems. In: Proceed-
ings of the 2005 ACM workshop on Storage Security and Survivability, StorageSS ’05, pp. 9–25.
ACM, New York, NY, USA (2005)

24. Krohn, M., Freedman, M., Mazieres, D.: On-the-fly verification of rateless erasure codes for
efficient content distribution. In: Proceedings of IEEE Symposium on Security and Privacy,
pp. 226–240 (2004)

25. Kubiatowicz, J., et al.: Oceanstore: an architecture for global-scale persistent storage. SIGPLAN
Not. 35, 190–201 (2000)

26. Li, J., Krohn, M., Mazieres, D., Shasha, D.: Secure untrusted data repository (sundr). In: Pro-
ceedings of the 6th Conference on Symposium on Operating Systems Design & Implementation,
vol. 6, pp. 9–9. USENIX Association, Berkeley, CA, USA (2004)

27. Li, M., Yu, S., Ren, K., Lou, W.: Securing personal health records in cloud computing: patient-
centric and fine-grained data access control in multi-owner settings. In: Security and Privacy in
Communication Networks, pp. 89–106 (2010)

28. Lillibridge, M., Elnikety, S., Birrell, A., Burrows, M., Isard, M.: A cooperative internet backup
scheme. In: Proceedings of the Annual Conference on USENIX Annual Technical Conference,
pp. 3–3. USENIX Association, Berkeley, CA, USA (2003)

29. Lin, J.: Cloud Data Storage for Group Collaborations. Lecture Notes in Engineering and Com-
puter Science, vol. 2183 (2010)

30. Maheshwari, U., Vingralek, R., Shapiro, W.: How to build a trusted database system on untrusted
storage. In: Proceedings of the 4th Conference on Symposium on Operating System Design &
Implementation, OSDI’00, vol. 4, pp. 10–10. USENIX Association, Berkeley, CA, USA (2000)

31. Maniatis, P., Roussopoulos, M., Giuli, T.J., Rosenthal, D.S.H., Baker, M.: The lockss peer-to-
peer digital preservation system. ACM Trans. Comput. Syst. 23, 2–50 (2005)

32. Mell, P., Grance, T.: The NIST definition of cloud computing. Tech. Rep., National Institute of
Standards and Technology (2009)

33. Merkle, R.C.: Protocols for public key cryptosystems. IEEE Symposium on Security and Privacy,
p. 122 (1980)

34. Miller, R.: Amazon addresses EC2 power outages. Data Center Knowledge 1 (2010)

www.manaraa.com

428 World Wide Web (2012) 15:409–428

35. Muthitacharoen, A., Morris, R., Gil, T.M., Chen, B.: Ivy: a read/write peer-to-peer file system.
In: Proceedings of the 5th Symposium on Operating Systems Design and Implementation, OSDI
’02, pp. 31–44. ACM, New York, NY, USA (2002)

36. Naor, M., Rothblum, G.N.: The complexity of online memory checking. In: Proceedings of the
46th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’05, pp. 573–584.
IEEE Computer Society, Washington, DC, USA (2005)

37. Oprea, A., Reiter, M., Yang, K.: Space-efficient block storage integrity. In: Proceedings of the
NDSS Symposium, Citeseer (2005)

38. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In: Proceedings
of the 15th ACM conference on Computer and Communications Security, CCS ’08, pp. 437–448.
ACM, New York, NY, USA (2008)

39. Plank, J.S.: A tutorial on reed-solomon coding for fault-tolerance in raid-like systems. Softw.
Pract. Exp. 27, 995–1012 (1997)

40. Schroeder, B., Gibson, G.A.: Disk failures in the real world: what does an mttf of 1,000,000 hours
mean to you? In: Proceedings of the 5th USENIX conference on File and Storage Technologies.
USENIX Association, Berkeley, CA, USA (2007)

41. Schwarz, T., Miller, E.: Store, forget, and check: Using algebraic signatures to check remotely
administered storage. In: Proceedings of the 26th IEEE International Conference on Distributed
Computing Systems (ICDCS’06), p. 12 (2006). doi:10.1109/ICDCS.2006.80

42. Sebe, F., Domingo-Ferrer, J., Martinez-Balleste, A., Deswarte, Y., Quisquater, J.J.: Efficient
remote data possession checking in critical information infrastructures. IEEE Trans. Knowl.
Data Eng. 20, 1034–1038 (2008)

43. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Proceedings of the 14th Inter-
national Conference on the Theory and Application of Cryptology and Information Security:
Advances in Cryptology, ASIACRYPT ’08, pp. 90–107. Springer, Berlin, Heidelberg (2008)

44. Shah, M., Swaminathan, R., Baker, M.: Privacy-preserving audit and extraction of digital con-
tents. Tech. rep., Cryptology ePrint Archive, Report 2008/186, 2008. http://eprint.iacr.org (2008)

45. Shah, M.A., Baker, M., Mogul, J.C., Swaminathan, R.: Auditing to keep online storage services
honest. In: Proceedings of the 11th USENIX workshop on Hot Topics in Operating Systems,
pp. 11:1–11:6. USENIX Association, Berkeley, CA, USA (2007)

46. Shoup, V.: On the security of a practical identification scheme. In: Proceedings of the 15th
Annual International Conference on Theory and Application of Cryptographic Techniques,
EUROCRYPT’96, pp. 344–353. Springer, Berlin, Heidelberg (1996)

47. Smart, N.P., Warinschi, B.: Identity based group signatures from hierarchical identity-based
encryption. In: Proceedings of the 3rd International Conference Palo Alto on Pairing-Based
Cryptography, Pairing ’09, pp. 150–170. Springer, Berlin, Heidelberg (2009)

48. Velte, T., Velte, A., Elsenpeter, R.: Cloud Computing: a Practical Approach, 1 edn., chap. 7.
McGraw-Hill, New York, NY, USA (2010)

49. Wang, C., Ren, K., Lou, W., Li, J.: Toward publicly auditable secure cloud data storage services.
IEEE Netw. 24(4), 19–24 (2010). doi:10.1109/MNET.2010.5510914

50. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data storage
security in cloud computing. In: Proceedings of the 29th Conference on Information Commu-
nications, INFOCOM’10, pp. 525–533. IEEE Press, Piscataway, NJ, USA (2010)

51. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and data dynamics
for storage security in cloud computing. In: Proceedings of the 14th European conference on
Research in Computer Security, ESORICS’09, pp. 355–370. Springer, Berlin, Heidelberg (2009)

52. Yamamoto, G., Oda, S., Aoki, K.: Fast integrity for large data. In: Proceedings of the ECRYPT
Workshop on Software Performance Enhancement for Encryption and Decryption, pp. 21–32.
ECRYPT, Amsterdam, The Netherlands (2007)

53. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: Proceedings of the 29th Conference on Information Communi-
cations, pp. 534–542. IEEE Press (2010)

54. Yumerefendi, A.R., Chase, J.S.: Strong accountability for network storage. Trans. Storage 3
(2007)

55. Zeng, K.: Publicly verifiable remote data integrity. In: Proceedings of the 10th International
Conference on Information and Communications Security, ICICS ’08, pp. 419–434. Springer,
Berlin, Heidelberg (2008)

56. Zhu, Y., Wang, H., Hu, Z., Ahn, G., Hu, H., Yau, S.: Cooperative provable data possession 0
(2010)

http://dx.doi.org/10.1109/ICDCS.2006.80
http://eprint.iacr.org
http://dx.doi.org/10.1109/MNET.2010.5510914

	Data storage auditing service in cloud computing: challenges, methods and opportunities
	Abstract
	Introduction
	Data storage auditing model
	System model
	Threat model

	Methods of data storage auditing
	MAC-based methods
	RSA-based homomorphic methods
	RSA-based homomorphic hash value
	RSA-based homomorphic tag

	BLS-based homomorphic methods

	Analysis of auditing methods
	Security analysis
	Storage overhead
	Communication cost
	Computation complexity

	Challenging issues of data storage auditing
	Dynamic auditing
	Collaborative auditing
	Batch auditing

	Conclusion
	References

